Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1164035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152751

RESUMO

'Candidatus Phytoplasma solani' (stolbur phytoplasma) is associated with rubbery taproot disease (RTD) of sugar beet (Beta vulgaris L.), while Macrophomina phaseolina is considered the most important root rot pathogen of this plant in Serbia. The high prevalence of M. phaseolina root rot reported on sugar beet in Serbia, unmatched elsewhere in the world, coupled with the notorious tendency of RTD-affected sugar beet to rot, has prompted research into the relationship between the two diseases. This study investigates the correlation between the occurrence of sugar beet RTD and the presence of root rot fungal pathogens in a semi-field 'Ca. P. solani' transmission experiment with the cixiid vector Reptalus quinquecostatus (Dufour), in addition to naturally infected sugar beet in the open field. Our results showed that: (i) Reptalus quinquecostatus transmitted 'Ca. P. solani' to sugar beet which induced typical RTD root symptoms; (ii) Macrophomina phaseolina root rot was exclusively present in 'Ca. P. solani'-infected sugar beet in both the semi-field experiment and naturally infected sugar beet; and that (iii) even under environmental conditions favorable to the pathogen, M. phaseolina did not infect sugar beet, unless the plants had been previously infected with phytoplasma.

2.
Phytopathology ; 112(4): 929-943, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34664974

RESUMO

Family Botryosphaeriaceae and the genus Diaporthe (family Diaporthaceae) represent diverse groups of plant pathogens, which include causal agents of leaf spot, shoot blight, branch and stem cankers, dieback, and pre- and postharvest apple fruit decay. Apple fruit with symptoms of light to dark brown decay were collected during and after harvest from 2016 to 2018. Thirty selected isolates, on which pathogenicity was confirmed, were identified and characterized based on multilocus phylogeny and morphology. Five species from the family Botryosphaeriaceae and two from the genus Diaporthe (fam. Diaporthaceae) were discovered. The most commonly isolated was Diplodia seriata followed by Botryosphaeria dothidea. In this work, Diaporthe rudis is described as a new postharvest pathogen of apple fruit. Diplodia bulgarica, Diplodia sapinea, Neofusicoccum yunnanense, and Diaporthe eres are initially described as postharvest apple and D. sapinea as postharvest quince and medlar fruit pathogens in Serbia. Because species of the family Botryosphaeriaceae and the genus Diaporthe are known to cause other diseases on their hosts, have an endophytic nature, and have a wide host range, findings from this study imply that they may become a new challenge for successful fruit production.


Assuntos
Malus , Frutas , Filogenia , Doenças das Plantas , Sérvia
3.
J Fungi (Basel) ; 7(12)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34947001

RESUMO

Blue mold, caused by Penicillium spp., is one of the most economically important postharvest diseases of pome fruits, globally. Pome fruits, in particular apple, is the most widely grown pome fruit in Serbia, and the distribution of Penicillium spp. responsible for postharvest decay is unknown. A two-year survey was conducted in 2014 and 2015, where four pome fruits (apple, pear, quince, and medlar) with blue mold symptoms were collected from 20 storage locations throughout Serbia. Detailed morphological characterization, analysis of virulence in three apple cultivars, and multilocus phylogeny revealed three main Penicillium spp. in order of abundance: P. expansum, P. crustosum, and P. solitum. Interestingly, P. expansum split into two distinct clades with strong statistical support that coincided with several morphological observations. Findings from this study are significant and showed previously undocumented diversity in blue mold fungi responsible for postharvest decay including the first finding of P. crustosum, and P. solitum as postharvest pathogens of quince and P. crustosum of medlar fruit in the world, and P. expansum of quince in Serbia. Data from this study provide timely information regarding phenotypic, morphological and genotypic plasticity in P. expansum that will impact the design of species-specific detection tools and guide the development of blue mold management strategies.

4.
Plant Dis ; 105(4): 787-796, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33054623

RESUMO

Cabbage, a widely used and popular vegetable, and oilseed rape, the second most valuable oilseed crop in the world, are two important species from the Brassicaceae family. Two geographically separated outbreaks of cabbage and oilseed rape root rot with estimated incidence of 15 and 20%, respectively, were recorded during 2017 in the Vojvodina region, Serbia. Twelve hyphal-tip isolates were obtained from symptomatic cabbage and oilseed rape plants and identified as Waitea circinata var. zeae based on morphological and molecular features. This indicates that W. circinata var. zeae has expanded its host range to the Brassicaceae family. Sequence analyses of internal transcribed spacer (ITS) and large subunit of the ribosomal DNA, RPB2, and ß-tubulin genes revealed the highest similarity with multiple W. circinata var. zeae. Neighbor-joining analyses of ITS sequences resulted in a phylogenetic tree with one well-defined branch of W. circinata var. zeae, with two separate groups. All Serbian isolates and the majority of isolates originating from natural infection of dicotyledonous plants grouped together in group I. Following artificial inoculation, W. circinata var. zeae isolates caused mild to medium root necrosis of seedlings of 2 monocotyledonous and 12 dicotyledonous plant species, implying a wider host range than was known for W. circinata var. zeae. Additionally, this is the first occurrence of W. circinata var. zeae on dicotyledonous host plants in Europe. Because cabbage and oilseed rape are important crops grown worldwide, the occurrence of this new soilborne pathogen with a broad host range imposes the necessity for changes in routine disease control practices, particularly crop rotation.


Assuntos
Brassica , Basidiomycota , Filogenia , Doenças das Plantas , Sérvia
5.
J Environ Sci Health B ; 56(1): 54-63, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33156729

RESUMO

Twenty-two strains of Trichoderma spp. (T. harzianum species complex [THSC], Trichoderma aggressivum f. europaeum, Trichoderma pleuroti, and Trichoderma pleuroticola) causing green mold disease on edible mushrooms (button mushroom, shiitake and oyster mushroom), collected during 2004-2018 from four countries (Serbia, North Macedonia, Croatia, and Hungary) were examined. Based on their ITS (internal transcribed spacer) sequences, strains from shiitake mushroom in Serbia were identified as members of the THSC, while in samples obtained from Serbian and North-Macedonian oyster mushroom farms THSC, T. pleuroti and T. pleuroticola were detected, which represent the first findings in the region. In fungicide susceptibility tests, all examined Trichoderma strains were found to be highly sensitive to prochloraz (ED50<0.4 µg mL-1) and considerably susceptible to metrafenone (ED50 < 4 µg mL-1). The most sensitive taxon to both fungicides was THSC from oyster mushroom. The toxicity of metrafenone was satisfying and strains from oyster mushroom showed the highest sensitivity (ED50 < 1.43 µg mL-1), while strains originating from button mushroom and shiitake displayed similar susceptibilities (ED50 < 3.64 µg mL-1). After additional in vivo trials, metrafenone might also be recommended for the control of green mold disease in mushroom farms.


Assuntos
Benzofenonas/farmacologia , Fungicidas Industriais/farmacologia , Imidazóis/farmacologia , Trichoderma/efeitos dos fármacos , Agaricus/efeitos dos fármacos , Agaricus/crescimento & desenvolvimento , Europa Oriental , Testes de Sensibilidade Microbiana , Trichoderma/classificação
6.
Plant Dis ; 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967562

RESUMO

Penicillium crustosum Thom. is a fungus commonly found on cheese and nuts, but is also a postharvest pathogen that causes blue mold disease of pome and stone fruits including plum and nectarine (Louw and Korsten 2016; Restuccia et al. 2006). The fungus produces mycotoxins (penitrem A, roquefortine C, terrestric acid, and cyclopenol) which are of concern for human health (Frisvad and Samson 2004). In Serbia, P. crustosum has been previously described on apple fruit (Vico et al. 2014). On nectarine fruit (Prunus persica var. nucipersica), after 6 weeks of cold storage, symptoms of blue mold developed in a fruit market in Belgrade, Serbia. The fruit was collected and isolations performed in November 2017. Decayed areas on infected fruit were soft, light to medium brown with blue-green sporulation on the fruit surface. Two isolates were obtained (N2AS and N2BS) and cultured on Czapek yeast autolysate agar (CYA), malt extract agar (MEA), yeast extract sucrose agar (YES) and potato dextrose agar (PDA) at 25°C for 7 days. Isolates were identified as P. crustosum based on morphological features (Frisvad and Samson 2004; Pitt and Hocking 2009). On all media, mycelia were white and colonies turned blue-green with abundant sporulation. Colonies of both isolates were radially sulcate on MEA and YES, and plane with a granular texture on CYA and PDA, and were yellow to orange on the reverse side on YES. Mean colony diameter on PDA was 29.2 ± 1.2 mm for N2AS, and 31.3 ± 1.4 mm for N2BS; on CYA 30.8 ± 1.2 mm for N2AS and 30.9 ± 1.1 mm for N2BS; on YES 40.7 ± 3.6 mm for N2AS and 43.6 ± 1.4 mm for N2BS; and on MEA 33.4 ± 1.2 mm for N2AS and 34 ± 2.5 mm for N2BS. Crusts of conidial masses formed on MEA and PDA after 10 days. Conidiophores of both isolates were terverticillate, stipes were septate with rough walls, and conidia, borne in columns, were smooth and spherical to subglobose. Conidial diameter for N2AS was 2.32 to 3.95 (average 3.13) µm and for N2BS was 2.34 to 3.98 (average 3.27) µm (n=50). Isolates formed a yellow ring, using Ehrlich's reagent, indicating lack of cyclopiazonic acid, but production of other alkaloids. Morphological identification was confirmed by isolating genomic DNA, PCR amplification of the partial ß-tubulin gene using Bt2a/Bt2b (Glass and Donaldson 1995) and sequencing. BLAST analysis revealed that N2AS sequence (MT799805) was 99% similar and N2BS (MT799806) was identical to sequences AY674351 (strain CBS 101025) and KJ775121 (strain DTO_244H8) of P. crustosum in GenBank. Sequences (2X consensus) of the two isolates differed in one nucleotide showing the existence of single-nucleotide polymorphism among P. crustosum isolates. Pathogenicity was tested on nectarine, peach and apple fruit (four fruit per isolate and the control). Fruit were washed, surface-sanitized with 70% ethanol, and wound (10x4 mm) inoculated on two sides with 40 µl of a 105/ml conidial suspension in sterile distilled water containing 0.1% Tween 20 (TSDW). Control fruit was inoculated with TSDW. Inoculated and control fruit were stored at 25°C for 7 days. Inoculated fruit developed light brown decay with cracks in the epidermis that spread from the inoculation point on nectarines and peaches. Blue-green sporulation was present on all inoculated fruit. Control fruit remained symptomless. The fungus was re-isolated and was morphologically identical to the original isolates, thus completing Koch's postulates. This is the first report of P. crustosum causing postharvest blue mold decay on nectarine fruit in Serbia. Results show that P. crustosum is not only present as a postharvest pathogen of apple fruit, but of nectarine as well and may pose a threat in storage of both pome and stone fruits in Serbia. References: Frisvad, J. C. and Samson, R. A. 2004. Stud. Mycol. 49:1. Glass, N.L. and Donaldson, G. C. 1995. Appl. Environ. Microbiol. 61: 1323. Louw, J.P., and Korsten, L. 2016. Eur. J. Plant Pathol. 146: 779. Pitt, J. I. and Hocking, A. D. 2009. Fungi and food spoilage, 239. Springer. Restuccia et al. 2006. J. Food Prot. 69: 2465. Vico, I., et al. 2014. Plant Dis. 98:1430. Acknowledgment: This research was supported by the project III46008, No. 451-03-68/2020-14/200116, financed by the Ministry of Education, Science and Technological Development, Republic of Serbia.

7.
Phytopathology ; 109(11): 1900-1907, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31369362

RESUMO

Floricolous downy mildews (Peronospora, oomycetes) are a small, monophyletic group of mostly inconspicuous plant pathogens that induce symptoms exclusively on flowers. Characterization of this group of pathogens, and information about their biology, is particularly sparse. The recurrent presence of a disease causing flower malformation which, in turn, leads to high production losses of the medicinal herb Matricaria chamomilla in Serbia has enabled continuous experiments focusing on the pathogen and its biology. Peronospora radii was identified as the causal agent of the disease, and morphologically and molecularly characterized. Diseased chamomile flowers showed severe malformations of the disc and ray florets, including phyllody and secondary inflorescence formation, followed by the onset of downy mildew. Phylogeny, based on internal transcribed spacer and cox2, indicates clustering of the Serbian P. radii with other P. radii from chamomile although, in cox2 analyses, they formed a separate subcluster. Evidence pointing to systemic infection was provided through histological and molecular analyses, with related experiments validating the impact of soilborne and blossom infections. This study provides new findings in the biology of P. radii on chamomile, thus enabling the reconstruction of this floricolous Peronospora species' life cycle.


Assuntos
Camomila , Peronospora , Camomila/microbiologia , DNA Espaçador Ribossômico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genes Fúngicos/genética , Peronospora/classificação , Peronospora/genética , Peronospora/fisiologia , Filogenia , Doenças das Plantas/microbiologia
8.
Plant Dis ; 102(2): 359-369, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30673531

RESUMO

Brown rot, caused by Monilinia spp., is an economically important pre- and postharvest disease of pome and stone fruits worldwide. In Serbia, apple is the most widely grown pome fruit, and the distribution of economically important Monilinia spp. responsible for apple brown rot is unknown. Hence, we conducted a three year survey, from 2010 to 2012, where 349 isolates were obtained from six orchards and four storage facilities from five different apple cultivars with brown rot symptoms. Morphological characterization of the isolates, multiplex PCR, and phylogenetic analysis revealed four species: M. fructigena, M. laxa, M. fructicola, and Monilia polystroma. All species were found in the orchard and in storage, with M. fructigena predominating, followed by M. polystroma. Representative isolates were analyzed in vitro and in vivo where differences in growth rate, sporulation, and virulence on apple fruit were observed. Findings from this investigation demonstrate diversity in the species responsible for pre- and postharvest apple brown rot, which has significant implications for pathogen detection and for developing disease-specific management strategies.


Assuntos
Ascomicetos/fisiologia , Ascomicetos/patogenicidade , Malus/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/classificação , Ascomicetos/crescimento & desenvolvimento , DNA Fúngico/análise , DNA Ribossômico/análise , Frutas/microbiologia , Filogenia , Análise de Sequência de DNA , Sérvia
9.
Mycologia ; 104(3): 604-12, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22241612

RESUMO

A polygalacturonase (PG) isozyme was isolated from Penicillium solitum-decayed Anjou pear fruit and purified to homogeneity with a multistep process. Both gel filtration and cation exchange chromatography revealed a single PG activity peak, and analysis of the purified protein showed a single band with a molecular mass of 43 kDa, which is of fungal origin. The purified enzyme was active from pH 3.5-6, with an optimum at pH 4.5. PG activity was detectable 0-70 C with 50 C maximum. The purified isozyme was inhibited by the divalent cations Ca(2+), Mg(2+), Mn(2+) and Fe(2+) and analysis of enzymatic hydrolysis products revealed polygalacturonic acid monomers and oligomers. The purified enzyme has an isoelectric point of 5.3 and is not associated with a glycosylated protein. The PG isozyme macerated fruit tissue plugs in vitro and produced ~1.2-fold more soluble polyuronides from pear than from apple tissue, which further substantiates the role of PG in postharvest decay. Data from this study show for the first time that the purified PG produced in decayed Anjou pear by P. solitum, a weakly virulent fungus, is different from that PG produced by the same fungus in decayed apple.


Assuntos
Malus/microbiologia , Penicillium/enzimologia , Doenças das Plantas/microbiologia , Poligalacturonase/isolamento & purificação , Pyrus/microbiologia , Cátions Bivalentes/farmacologia , Eletroforese em Gel de Poliacrilamida , Frutas/microbiologia , Concentração de Íons de Hidrogênio , Hidrólise , Ponto Isoelétrico , Isoenzimas , Cinética , Peso Molecular , Poligalacturonase/química , Poligalacturonase/efeitos dos fármacos , Poligalacturonase/metabolismo , Temperatura , Ácidos Urônicos/análise , Ácidos Urônicos/metabolismo
10.
Phytopathology ; 100(1): 42-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19968548

RESUMO

A polygalacturonase (PG) was extracted and purified from decayed tissue of 'Anjou' pear fruit inoculated with Penicillium expansum. Ammonium sulfate precipitation, gel filtration, and cation exchange chromatography were used to purify the enzyme. Both chromatographic methods revealed a single peak corresponding to PG activity. PG enzyme activity from healthy and wounded pear tissue was undetectable, which supports the claim that the purified PG is of fungal origin. The purified enzyme had a molecular mass of 41 kDa and a pI of 7.8. Activity of the PG was not associated with a glycosylated protein. The enzyme was active over a broad pH range from 3 to 6, with optimal activity at 4.5 in sodium citrate and sodium acetate buffers. The optimal temperature for activity was 37 degrees C but the enzyme was also active at 0, 5, 10, 20, and 50 degrees C. Thin-layer chromatographic analysis of PG hydrolysis products showed that the enzyme exhibits endo- and exo-activity. The purified enzyme macerated tissue in vitro causing approximately 30% reduction in mass of pear plugs compared with approximately 17% reduction for apple. Additionally, it produced 1.5-fold more soluble polyuronides on pear than apple tissue. This work shows for the first time the production of a PG by P. expansum during postharvest decay of pear fruit is different from the previously described PG produced in decayed apple fruit by the same pathogen.


Assuntos
Frutas/microbiologia , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Penicillium/enzimologia , Poligalacturonase/isolamento & purificação , Poligalacturonase/metabolismo , Pyrus/microbiologia , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Focalização Isoelétrica , Cinética , Temperatura
11.
Phytopathology ; 99(6): 636-41, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19453221

RESUMO

Polygalacturonase (PG) was extracted and purified from decayed 'Golden Delicious' apple fruit inoculated with Penicillium solitum. Ammonium sulfate, gel filtration, and cation exchange chromatography were used to purify the enzyme. Both chromatographic methods revealed a single peak corresponding to PG activity. The purified PG most likely originates from the fungus because PG activity from healthy and wounded apple tissue was undetectable. Analysis of cation exchange-purified material using sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed a single 50-kDa band. The enzyme was active over a broad pH range (3 to 7), with optimal activity between pH 4 and 5. PG was highly active at 20 and 37 degrees C but was also detectable at 2, 50, and 75 degrees C. Divalent cations affected PG enzyme activity; Mg and Fe increased, whereas Ca and Mn reduced activity in vitro. Thin-layer chromatographic separation of hydrolysis products and data from a PG plate activity assay based on staining with ruthenium red showed that the enzyme exhibits both exo and endo activity. Purified PG incubated with intact apple fruit tissue in vitro caused a 30% reduction in mass after 48 h, suggesting a role in P. solitum-mediated decay of apple fruit.


Assuntos
Malus/microbiologia , Penicillium/enzimologia , Penicillium/isolamento & purificação , Poligalacturonase/isolamento & purificação , Cátions Bivalentes/farmacologia , Cromatografia em Camada Fina , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Cinética , Poligalacturonase/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...